Optimisation with Stan

Using Stan for optimization.

Stan
Optimisation
Author
Affiliation
Published

August 27, 2020

In this post I just wanted to play around using the ability to optimize functions in Stan. I know that there are other solvers available, but I just wanted to try this one to start (and I can’t find it now, but I think this was discussed in Regression and Other Stories).

First, I’ll load the cmstanr package which has become my favourite way to interface with Stan.

library(cmdstanr)
This is cmdstanr version 0.4.0
- Online documentation and vignettes at mc-stan.org/cmdstanr
- CmdStan path set to: /Users/michael/.cmdstanr/cmdstan-2.28.2
- Use set_cmdstan_path() to change the path

A newer version of CmdStan is available. See ?install_cmdstan() to install it.
To disable this check set option or environment variable CMDSTANR_NO_VER_CHECK=TRUE.

Now we can compile a simple optimization scenario which could be a pretty classic production function where you get 2 dollars for widget x and four dollars for wiget y:

\[ \text{optimize } 2*x + 4*y \\ \text{subject to:} \\ 0\le x \le 10 \\ 0\le y \le 20 \\ \]

There are also contraints on how many units you can make of each.

m <- cmdstan_model("optim.stan")

Now print the code:

m$print()
//Test program for optimization

data{
  
}

parameters{
  real<lower=0,upper=10> x;
  real<lower=0,upper=20> y;
}
model{
  target += 2*x +4*y;
}

Run the model:

fit <- m$sample(refresh = 0)
Running MCMC with 4 parallel chains...

Chain 1 finished in 0.0 seconds.
Chain 2 finished in 0.0 seconds.
Chain 3 finished in 0.0 seconds.
Chain 4 finished in 0.0 seconds.

All 4 chains finished successfully.
Mean chain execution time: 0.0 seconds.
Total execution time: 0.4 seconds.
Warning in seq.default(from = 1, len = along - 1): partial argument match of
'len' to 'length.out'
Warning in seq.default(to = N - 1, len = N - along): partial argument match of
'len' to 'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.list)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = ncol(arg.dim)): partial argument match of 'len' to
'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.names)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Summarise the outputs:

fit$print()
Warning in seq.default(from = 1, len = along - 1): partial argument match of
'len' to 'length.out'
Warning in seq.default(to = N - 1, len = N - along): partial argument match of
'len' to 'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.list)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = ncol(arg.dim)): partial argument match of 'len' to
'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.names)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'
 variable  mean median   sd  mad    q5   q95 rhat ess_bulk ess_tail
     lp__ 94.71  95.06 1.14 0.83 92.35 95.80 1.00     1291     1438
     x     9.48   9.64 0.51 0.36  8.47  9.97 1.00     1771     1099
     y    19.75  19.82 0.24 0.18 19.24 19.99 1.00     1923     1360
out <- fit$draws(inc_warmup = FALSE, variables = c("x", "y"))
out_x <- rowMeans(as.data.frame(out[,,1]))
out_y <- rowMeans(as.data.frame(out[,,2]))

Graph the outputs:

op <- par(mfrow = c(1,2))
op
$mfrow
[1] 1 1
hist(out_x, breaks = 30, main = "Posterior Draws of X", col = "blue")
abline(v = mean(out_x), lwd = 2, col = "red")
hist(out_y, breaks = 30, main = "Posterior Draws of Y", col = "blue")
abline(v = mean(out_y), lwd = 2, col = "red")

Pretty neat that it works.

Alternatively, you could use the optimize function from CmdStan, but this is a bit of a contrite example. More discussion on this is available at this post. Additionally it is important that the target syntax increments the log-density. In our case it doesn’t matter, but in others it might.

A Second Example

Just to play a bit, I want to add some data. Say we have the same function to optimize to maximize revenue, but instead of making any value of x and y, we have some production data with variability. Perhaps these can be real output from our operating process (machines breakdown and life happens, so a higher value might not be reasonable.)

m2 <- cmdstan_model("optim2.stan")

Edit 2022-06-02, I realized I didn’t show the code in earlier versions.

m2$print()
//Test program for optimization

data{
  int<lower=1> N; //number of obs
  vector[N] y_in; // observed y
  vector[N] x_in; // observed x
  real<lower=0> sd_y;
  real<lower=0> sd_x;
}

parameters{
  real<lower=0,upper=100> x;
  real<lower=0,upper=200> y;
}
model{
  y_in ~ normal(y, sd_y);
  x_in ~ normal(x, sd_x);
  
  target += 2*x +4*y;
}
dat <- list(
  y_in = rnorm(100, 7, 1.2),
  x_in = rnorm(100, 23, 5),
  sd_x = 5L,
  sd_y = 2L,
  N = 100L
)

fit2 <- m2$sample(data = dat, refresh = 0)
Running MCMC with 4 parallel chains...

Chain 1 finished in 0.0 seconds.
Chain 2 finished in 0.1 seconds.
Chain 3 finished in 0.0 seconds.
Chain 4 finished in 0.0 seconds.

All 4 chains finished successfully.
Mean chain execution time: 0.0 seconds.
Total execution time: 0.2 seconds.
Warning in seq.default(from = 1, len = along - 1): partial argument match of
'len' to 'length.out'
Warning in seq.default(to = N - 1, len = N - along): partial argument match of
'len' to 'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.list)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = ncol(arg.dim)): partial argument match of 'len' to
'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.names)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Now we can see the results:

fit2$print()
Warning in seq.default(from = 1, len = along - 1): partial argument match of
'len' to 'length.out'
Warning in seq.default(to = N - 1, len = N - along): partial argument match of
'len' to 'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.list)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = ncol(arg.dim)): partial argument match of 'len' to
'length.out'
Warning in seq.default(len = N): partial argument match of 'len' to 'length.out'
Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'

Warning in seq.default(along = arg.names): partial argument match of 'along' to
'along.with'
Warning in seq.default(len = length(arg.names)): partial argument match of 'len'
to 'length.out'
Warning in seq.default(along = perm): partial argument match of 'along' to
'along.with'
 variable  mean median   sd  mad    q5   q95 rhat ess_bulk ess_tail
     lp__ 10.53  10.82 0.95 0.70  8.65 11.45 1.00     1854     2462
     x    23.97  23.97 0.50 0.51 23.16 24.79 1.00     3721     2765
     y     7.20   7.20 0.19 0.19  6.88  7.52 1.00     3569     2629
out <- fit2$draws(inc_warmup = FALSE, variables = c("x", "y"))
out_x <- rowMeans(as.data.frame(out[,,1]))
out_y <- rowMeans(as.data.frame(out[,,2]))
op <- par(mfrow = c(1,2))
op
$mfrow
[1] 1 1
hist(out_x, breaks = 30, main = "Posterior Draws of X", col = "blue")
abline(v = mean(out_x), lwd = 2, col = "red")
hist(out_y, breaks = 30, main = "Posterior Draws of Y", col = "blue")
abline(v = mean(out_y), lwd = 2, col = "red")

The results from the second model represent the influence of the data from our actual manufacturing process. This can be valuable when trying to optimize these kinds of problems when the true data generating process is available to us.

Reuse

Citation

BibTeX citation:
@online{dewitt2020,
  author = {Michael DeWitt},
  editor = {},
  title = {Optimisation with {Stan}},
  date = {2020-08-27},
  url = {https://michaeldewittjr.com/programming/2020-08-27-optimisation-with-stan},
  langid = {en}
}
For attribution, please cite this work as:
Michael DeWitt. 2020. “Optimisation with Stan.” August 27, 2020. https://michaeldewittjr.com/programming/2020-08-27-optimisation-with-stan.